Contoh Soal dan Penyelesaian Persamaa Linear Tiga Variabel
Nama : Aulia Maheswari
Kelas : X MIPA 3
Absen : 6
Matematika Wajib, SMAN 63 Jakarta
SPLDV ( Persamaan Linear Tiga Variabel )
contoh soal =
- Diketahui sebuah bilangan tiga angka. Jumlah angka-angka tersebut 11. Dua kali angka pertama ditambah angka kedua sama dengan angka ketiga. Angka pertama ditambah angka kedua dikurangi angka ketiga sama dengan- Tentukan ketiga bilangan tersebut.
Persamaan matematis:
a + b + c = 11
2a + b = c => 2a + b – c = 0
a + b – c = – 1
Diperoleh SPLTV yakni:
a + b + c = 11 . . . . pers (1)
2a + b – c = 0 . . . . pers (2)
a + b – c = – 1 . . . . pers (3)
Langkah I
Eliminasi c dengan menggunakan persamaan 1 dan 2 maka:
a + b + c = 11
2a + b – c = 0
----------------- +
3a + 2b = 11 . . . . . pers (4)
Langkah II
Eliminasi b dan c dengan menggunakan persamaan 2 dan 3, maka:
2a + b – c = 0
a + b – c = – 1
------------------ -
a = 1
Langkah III
Subtitusi nilai a ke persamaan 4, maka:
3a + 2b = 11
3(1) + 2b = 11
3 + 2b = 11
2b = 8
b = 4
Langkah IV
Subtitusi nilai a dan b ke persamaan 1, 2 atau 3, maka:
a + b + c = 11
1 + 4 + c = 11
5 + c = 11
c = 6
Jadi ketiga bilangan tersebut secara berurutan adalah 1, 4 dan 6.
2. Tentukan himpunan penyelesaian sistem persamaan linear tiga variabel berikut.
2x + 5y – 3z = 3
6x + 8y -5z = 7
-3x + 3y + 4y = 15
Pembahasan :
2x + 5y – 3z = 3 … (1)
6x + 8y -5z = 7 … (2)
-3x + 3y + 4z = 15 … (3)
Eliminasikan variabel z menggunakan (1) dan (2):
2x + 5y – 3z = 3 |×5| ⇔ 10x + 25y – 15z = 15
6x + 8y -5z = 7 |×3| ⇔ 18x + 24y -15z = 21 –
-8x + y = -6 … (4)
Eliminasikan variabel z menggunakan (1) dan (3):
2x + 5y – 3z = 3 |×4| ⇔ 8x + 20y – 12z = 12
-3x + 3y + 4z = 15 |×3| ⇔-9x + 9y + 12z = 45 +
-x + 29y = 57 … (5)
Eliminasikan variabel y menggunakan (4) dan (5):
-8x + y = -6 |×29| ⇔ -232x + 29y = -174
-x + 29y = 57 |×1| ⇔ -x + 29y = 57 –
-231x = -231
x = 1
Substitusikan x ke (4):
-8x + y = -6
-8(1) + y = -6
-8 + y = -6
y = 8 – 6
y = 2
Kemudian, subsitusikan x dan y ke (1)
2x + 5y – 3z = 3
2(1) + 5(2) – 3z = 3
2 + 10 – 3z = 3
12 – 3z = 3
– 3z = 3 -12 = -9
z = -9/-3
z = 3
Jadi, himpunan penyelesaiannya adalah {(1, 2, 3)}
Daftar Pustaka :
- https://rumuspintar.com/persamaan-linear/contoh-soal-spltv/
- https://mafia.mafiaol.com/2020/10/contoh-soal-cerita-persamaan-linear-tiga-variabel-dan-penyelesaiannya.html
Komentar
Posting Komentar